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With the advent of sophisticated acquisition and analysis techniques, decoding the contents of someone's expe-
rience has become a reality. We propose a straightforward linear Gaussian approach, where decoding relies on
the inversion of properly regularized encoding models, which can still be solved analytically. In order to test
our approach we acquired functional magnetic resonance imaging data under a rapid event-related design in
which subjects were presented with handwritten characters. Our approach is shown to yield state-of-the-art re-
constructions of perceived characters as estimated from BOLD responses. This even holds for previously unseen
characters. We propose that this framework serves as a baseline with which to compare more sophisticated
models for which analytical inversion is infeasible.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Neural encoding and decoding are two topics which are of key im-
portance in contemporary cognitive neuroscience. Neural encoding re-
fers to the representation of certain stimulus features by particular
neuronal populations as reflected by measured neural responses. Con-
versely, neural decoding refers to the prediction of such stimulus fea-
tures from measured brain activity. Encoding is a classical topic in
neuroscience which has often been tackled using reverse correlation
methods (Ringach and Shapley, 2004). Decoding has gained much re-
cent popularity with the adoption of multivariate analysis methods by
the cognitive neuroscience community (Haynes and Rees, 2006).
While the first decoding studies focused exclusively on the prediction
of discrete states such as object category (Haxby et al., 2001) or stimulus
orientation (Kamitani and Tong, 2005), more recent work has focused
on theprediction of increasingly complex stimulus properties, culminat-
ing in the reconstruction of the contents of perceived images (Kay et al.,
2008; Miyawaki et al., 2008; Naselaris et al., 2009; Thirion et al., 2006;
van Gerven et al., 2010) and even video clips (Nishimoto et al., 2011).

From the Bayesian point of view, encoding and decoding are inti-
mately related via Bayes' rule where the probability p(x|y) of a stimulus
x given a response y is expressed as the product of a likelihood term
p(y|x) and a prior p(x), up to some normalizing constant (Friston
et al., 2008; Naselaris et al., 2010). The likelihood implements a forward
model expressing how certain stimulus features are encoded by neural
populations, as reflected by the measured response. The prior specifies
how likely each stimulus is before observing any data. Stimulus
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reconstruction is then tantamount to inverse inference in a generative
model. This approach has been advocated before. (Thirion et al., 2006)
assumed that each voxel has a Gaussian receptive field which allows in-
version of the generative model. (Naselaris et al., 2009), in contrast,
used a complex forward model and did not perform the inversion ex-
plicitly. Instead they used an empirical prior which assigns a uniform
probability to images in a predefined set and zero probability to all
other images. This essentially allows the decoding to be performed by
the forwardmodel only, without the explicit need for inverse inference.

In this paper we present a general framework for decoding that ex-
pands on the ideas put forward in the aforementioned papers. Specifi-
cally, similar to (Naselaris et al., 2009), we assume that the forward
model is given by the representation of an image in terms of a set of fea-
tures, followed by a regularized linear regression. We then derive the
formulas which, in conjunction with a suitable image prior, allow ex-
plicit decoding of the images as in (Thirion et al., 2006). The ideas
presented in this paper extend earlier work on the decoding of discrete
(binary) inputs to continuous (grey-scale) images (van Gerven et al.,
2011) and improve on results presented in (van Gerven and Heskes,
2012). We focus on the reconstruction of multiple handwritten charac-
ters that have beenpresented to subjects using a rapid event-relatedde-
sign. We develop a linear Gaussian approach, analyze properties of the
encodingmodels obtained in combination with different regularization
approaches, and show that decodingperformance is remarkably good in
this context. The simplicity of our framework makes it an ideal bench-
mark method with which to compare more sophisticated encoding
and decoding methods.

Materials and methods

In this section, we will first explain the Gaussian decoding model and
describe how parameters of the model are estimated in the presence of
of perceived images from human brain activity, NeuroImage (2013),
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different regularizationmethods. Subsequently, we present the func-
tional magnetic resonance imaging (fMRI) experiment which has been
conducted in order to validate our approach. Finally, we describe the
analyses which have been performed using our approach, based on ac-
quired fMRI data.

Gaussian decoding

Let (x,y) denote a stimulus–response pair, say, an image x ¼
x1;…; xp
� �⊤∈Rp, characterized by its pixel values xi, and the associated
measured response vectory ¼ ðy1;…; yqÞ⊤∈Rq.Without loss of general-
ity, both the stimulus and the response are assumed to be standardized
to have zero mean and unit standard deviation. In this paper we are in-
terested in decoding the most probable image x from the BOLD
response y:

bx ¼ arg max
x

p xjyð Þf g: ð1Þ

In previous work, we have shown how this problem can be solved in
a discriminative way using a partial least squares approach (van Gerven
and Heskes, 2010). Here, we focus on the generative setting, where we
wish to use the equivalent formulation:

bx ¼ arg max
x

p yjxð Þp xð Þf g: ð2Þ

In order to compute this maximum a posteriori (MAP) estimate, we
require an image prior p(x) and a forward model p(y|x). In Naselaris
et al. (2009), this problem was solved by assuming an empirical prior
that assigned uniform probability to any of n possible images and
zero probability to the remaining images. The decoding problem could
thus be solved by identifying that image which gave the largest likeli-
hood. Here, in contrast, we solve the decoding problemwithout relying
on a restricted subset of possible images. Our approach is related to
the work presented in Thirion et al. (2006), but we make weaker as-
sumptions on the form of the forward model and the image prior. Par-
ticularly, we assume that the forward model is given by a regularized
linear Gaussian model and the image prior is given by a multivariate
Gaussian.

We assume that the forward (encoding) model is given by a
multiple-output linear regression model, such that

y ¼ B⊤xþ ε; ε∼N 0;Σð Þ; ð3Þ

with regression coefficients B = (b1, …,bq) and covariance matrix Σ =
diag(σ1

2, …,σq
2). It follows that the forward model can be written as a

multivariate Gaussian

p yjxð Þ ¼ N y;B⊤x;Σ
� �

∝ exp −1
2
y⊤Σ−1yþ BΣ−1y

� �⊤
x−1

2
x⊤BΣ−1B⊤x

� �
;

ð4Þ

where (4) is its canonical form representation. We further assume that
the image prior is given by a zero-mean multivariate Gaussian of the
form:

p xð Þ∝ exp −1
2
x⊤R−1x

� �
; ð5Þ

with covariance matrix R.
Given p(y|x) and p(x), we can proceedwith decoding. That is, we are

interested in computing the mode of the distribution p(x|y). Dropping
terms in Eq. (4) not depending on x, this yields

p xjyð Þ∝ exp BΣ−1y
� �⊤

x−1
2
x⊤ R−1 þ BΣ−1B⊤

� �
x

� �
: ð6Þ
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This is recognized as a multivariate Gaussian in canonical form with
mean m ≡ QBΣ−1y and covariance Q = (R−1 + BΣ−1B⊤)−1. It imme-
diately follows that

bx ¼ m ¼ R−1 þ BΣ−1B⊤
� �−1

BΣ−1y; ð7Þ

since themode of a Gaussian distribution is given by its mean. Eq. (7) is
a standard result obtained in Bayesian linear regression (Bishop, 2006).
Note further that the covariance matrix Q captures the posterior vari-
ance of the image reconstructions.

For large images, computing (7) may be prohibitively expensive
since it requires inversion of a p × p covariance matrix, where p is the
number of pixels. In that case, we can make use of the matrix inversion
lemma to obtain

bx ¼ R−RB Σ þ B⊤RB
� �−1

B⊤R
� �

BΣ−1y: ð8Þ

This requires the inversion of a q × qmatrix, where q is the number
of voxels. Which formulation is most convenient depends on the prob-
lem at hand.

Parameter estimation

In order to be able to use ourmodel for decoding, we first need to es-
timate the parameters of the prior and the forward model. We assume
that training data D = {X,Y} has been collected, where X is an N × p
matrix, such that xij denotes the value of pixel j for the i-th image, and
Y is an N × q matrix, such that yij denotes the response of voxel j to
the i-th image. Furthermore, we assume that an independent set of im-
ages Z has been collected, which will be used to estimate the image
prior.We use notationmi andmj to denote the i-th row and j-th column
of a matrix M, respectively.

The parameters of the image prior are estimated from an indepen-
dent large set of images {zn}n = 1

M , which are standardized to have zero
mean and unit variance. In the linear Gaussian case, the required covari-
ance matrix for the prior is given by

R ¼ 1
N−1

X
n
zn zn
� �⊤

: ð9Þ

For the forward model, it is easy to see that the parameters for each
of the responses can be estimated independently due to the diagonality
of Σ. That is, for each response k, we need to solve an independent linear
regression problem. Since we are dealing with the small N, large p case,
regression coefficients need to be properly regularized. Let bbk; bσ2

k

� �
de-

note the estimates of the vector of regression coefficients and variance
for voxel k. This estimate takes the form1

bbk; bσ2
k

� �
¼ arg min

b;σ2

1
2Nσ2 ∥yk−Xb∥22 þ Rλ;α;G bð Þ

� 	
; ð10Þ

where

Rλ;α;G bð Þ ¼ λ α∥b∥1 þ 1−αð Þ1
2
b⊤Gb

� �
ð11Þ

is a regularization term which, following Grosenick et al. (2013), we
refer to as the graph-constrained elastic net (graphnet for short)
regularizer.

The graphnet regularizer contains three parameters that can be set
to obtain different models: λ, α and G. The regularization parameter λ
determines the amount of regularization. The mixing parameter α de-
termines the relative contribution of the ‘1 regularization term, which
of perceived images from human brain activity, NeuroImage (2013),
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induces sparseness, and the ‘2 regularization term, which induces
shrinkage. Different kinds of regularization are achieved using different
choices of α and the coupling matrix G. If we set α = 1 we obtain the
lasso ‘1ð Þ regularizer (Tibshirani, 1996). If we set α = 0 and G = Ip,
where Ip is the p × p identitymatrix, we obtain the ridge ‘2ð Þ regularizer
(Hoerl and Kennard, 1970). If we set 0 b α b 1 and G = Ip, we obtain
the elastic net regularizer (Carroll et al., 2009; Zou and Hastie, 2005).
If we set 0 ≤ α b 1 and use non-diagonal G, we obtain the graphnet
regularizer, which induces a coupling between features. If, in the latter
case, α = 0, only the ridge term remains. In that case, we use
graphridge to refer to the resulting regularizer.

In case of a non-diagonal coupling matrix, we assume G to be the
graph Laplacian L, which is a matrix with lij = −1 for each i ≠ j
that are defined to be neighboring image pixels and lii equal to the num-
ber of neighbors of node i (Grosenick et al., 2013). Note that the
graphnet regularizer can be interpreted in probabilistic terms since
log p(b) ∝ − Rλ,α,G(b). Hence, the prior on the regression coefficients
is given by

p bð Þ∝∏
i
exp −λα bij jð Þ∏

j
exp −λ 1−αð Þ1

2

X
i∼ j

biGijb j

0@ 1A ð12Þ

which is a convex combination of a global Laplacian density and a local
Markov Random Field prior. Hence, the graphnet regularizer expresses
our prior beliefs about the model coefficients being globally sparse yet
locally structured (Grosenick et al., 2013).

In order to estimate the regularized regression coefficients bk, we
need to solve the following minimization problem:

bbk ¼ arg min
b

1
2N

∥yk−Xb∥22 þ Rλ;α;G bð Þ
� 	

: ð13Þ

We use different strategies depending on the used regularizer. For
ridge and graphridge regression we can simultaneously estimate re-
gression coefficients for all voxels k in closed form using

bB ¼ X⊤Xþ eG� �−1
X⊤Y; ð14Þ

with eG ¼ NλG. Alternatively, we can make use of a kernel formulation,
which replaces Eq. (14) by

bB ¼ eG−1
X⊤ XeG−1

X⊤ þ I
� �−1

Y; ð15Þ

with N × N kernel matrix K = XX⊤, requiring inversion of an N × N
matrix rather than a p × p matrix (Hastie et al., 2008). See Appendix A
for a derivation.

For lasso, elastic net and graphnet regression we minimize Eq. (13)
using a slight generalization of an efficient coordinate descent algorithm
(Friedman et al., 2010), applied to each voxel k independently. In order
to estimate λ we use a nested five-fold cross-validation and choose
for each voxel k that model which minimizes the residual variance
vk = var(Xbk − yk) on hold-out data. For ridge regression, we sample
λ in the range (105,10−5) on a log scale. In other cases, we sample dif-
ferent values ofλ by starting atλmax atwhich point the first variable en-
ters the model (see Appendix B) and continuing until λ ≤ 0.05 ⋅ λmax.
After an optimal value of λ was selected, parameters were re-
estimated using all training data. Based on a preliminary analysis
which considered data for Subject 3 only, the parameter α was set to
0.005 for the elastic net regularizer and to 0.05 for the graphnet
regularizer. For smaller values of α, the graphnet model became cum-
bersome to estimate due to slow convergence. The parameter bσ2

k intro-
duced in Eq. (10)was taken to be the residual variance vk on the training
data, computed for the optimal model selected during nested cross-
validation.
Please cite this article as: Schoenmakers, S., et al., Linear reconstruction
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fMRI experiment

Participants
Three healthy native Dutch-speaking participants took part in the

study. All participants gavewritten consent according to the institutional
guidelines set forth by the local ethics committee (CMO region Arnhem–

Nijmegen, The Netherlands) before the experiment. The participants
were not paid for participation.

Stimuli
The stimuli consisted of grayscale handwritten characters on a black

background (van der Maaten, 2009). The character database consists of
40,000 handwritten characters by 250 writers. The images in the data-
base were rescaled and centered so they fill the canvas. Six characters
were selected: B, R, A, I, N, and S. For each character, 60 unique instances
were centrally presented during the experiment. The size of the images
was 9 × 9° degrees of visual angle (56 × 56 pixels). A central white
square served as a fixation point (0.2° of visual angle). The images
were shown as flickering stimuli (200 ms ON, 200 ms OFF) for one sec-
ond, followed by three seconds of black background. The fixation point
was present at the center of the screen throughout the whole experi-
ment. A total of 360 different characters were shown and this was re-
peated once, giving a total of 720 presented stimuli. Stimuli were
repeated to get a better estimate of the BOLD response to individual
character instances(see FMRI data preprocessing section).

Procedure
Participantswere asked to focus on thefixation point and to respond

with a button press when the fixation point changed color from dark
gray to light blue in order to keep their vigilance. The fixation point
changed color once every six stimuli on average. Changes were
presented randomly but evenly over the full length of the experiment
and counterbalanced over characters. The characters were shown in
pseudo-random order where instances of all six letters were reshuffled
in order to prevent long repetitions of the same letter. The experiment
lasted for 50 min. with a self-paced rest period in the middle. After
the experiment, a structural scan was made. Subsequently, or in a
next session, a functional localizer for the visual cortex was employed.
The stimulus shown in the functional localizer was a rotating checker-
board wedge for polar retinotopy, which was presented in four blocks
of five minutes.

FMRI data acquisition
Imaging was conducted at the Donders Institute for Brain, Cognition

and Behaviour (Nijmegen, The Netherlands). The functional images
were collected with a Siemens Trio 3 T MRI system (Siemens, Erlangen
Germany) with an EPI sequence using a 32 channel head coil (TR =
1.74 s, TE = 30 ms, GRAPPA acceleration factor 3, 83° flip angle, 30
slices in ascending order, voxel size 2 × 2 × 2 mm). Head movement
was restricted with foam cushions and a tight strip of tape over the
forehead. After functional imaging, a structural scan was acquired
using an MPRAGE sequence (TR = 2.3 s, TE = 3.03 ms, voxel size
1 × 1 × 1 mm, 192 sagittal slices, FoV = 256 mm). In a separate ses-
sion, the functional localizer data was acquired, again using an EPI se-
quence (TR = 2 s, TE = 30 ms, 83° flip angle, 33 slices in ascending
order, voxel size 2 × 2 × 2 mm, FoV = 192 mm). During acquisition
an eye trackerwas used to verify if participants were fixating their gaze.

FMRI data preprocessing
With the use of SPM8 software (Wellcome Department of Imaging

Neuroscience, University College London, UK), the functional volumes
were reconstructed, realigned to the first scan of the session and slice
time corrected. Participants moved less than 0.5 mm across the ses-
sions. For each unique stimulus, which was presented twice to the sub-
ject, the response of each voxel to a stimulus was computed using a
general linear model (GLM). The design matrix of the GLM was given
of perceived images from human brain activity, NeuroImage (2013),
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Fig. 1. Encoding performance quantified in terms of summed explained variance for
models that employ different regularizers and varying input data, averaged over all partic-
ipants. Error bars indicate standard error of the mean.
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by one regressor encoding the two stimulus repetitions, one regressor
encoding all other stimuli, as well as nuisance regressors that encoded
movement parameters and drift terms, similar to the approach
presented in Mumford et al. (2011). The design matrix was convolved
with the canonical hemodynamic response function. The voxel response
for each stimuluswas given by the beta estimatewhichwas normalized
for each voxel. Freesurfer software was used together with functional
localizer data in order to isolate voxels belonging to visual area V1
using well-established methods (DeYoe et al., 1996; Engel et al., 1997;
Sereno et al., 1995).
100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Lasso
Graphnet
Elastic net
Graphridge
Ridge

voxels

 

 

10
voxels

 

10
v

 

10

^
kr

^
kr

^
kr

^
kr

v

101101 102 103

10 101101 102 103

S01

1 
ch

ar
ac

te
r 

(B
)

6 
ch

ar
ac

te
rs

 (
B

R
A

IN
S

)

SA

B

Fig. 2. Voxels sorted according to explained variance for the three participants on a logarith
regularizers for input data consisting of one character or all six characters, respectively.

Please cite this article as: Schoenmakers, S., et al., Linear reconstruction
http://dx.doi.org/10.1016/j.neuroimage.2013.07.043
Empirical validation

In order to validate our approach, we used the acquired fMRI data to
learn encoding and decodingmodels. In order to examine how regular-
ities in the input data influence encoding and decoding results, we
trained models for different subsets of input data. Six selections were
chosen: one character (B), two characters (B, R), three characters
(B, R, A), four characters (B, R, A, I), five characters, (B, R, A, I, N) and
six characters (B, R, A, I, N, S). Data were randomly split into training
data and test data. We used 80% of the data (48 exemplars per letter
class) for training ourmodels and 20% of the data for testing ourmodels
(12 exemplars per letter class). Our goal was to compare encoding per-
formance and decoding performance computed for the test data while
different regularization approaches were used to estimate the encoding
models from the training data. Specifically, we compared ridge, lasso,
elastic net, graphnet and graphridge regression.

Encoding
To compare encoding performance between models we calculated

the explained variance. Explained variance reflects how well the
model predicts the real data. For each voxel k, explained variance was
calculated in accordance to Michel et al. (2011):

brk ¼ var ykð Þ− var yk−byk� �� �
= var ykð Þ; ð16Þ

where yk is the actual response for voxel k and byk the estimate thereof,
based on Eq. (3). To facilitate comparison, voxels were sorted according
to explained variance and we only used 150 voxels with highest
explained variance per model to determine encoding performance.
We use br to refer to the average explained variance per model. A bino-
mial test comparing the explained variance of all sorted voxels between
models for which brkN0 served to show which regularizer performed
best.
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Explained variance was mapped back to the primary visual cortical
surface in order to determine which voxel responses were predicted
best. Model parameters were visualized by taking the vector of regres-
sion coefficients bk and reshaping it to a 56 × 56 pixel image, which
we refer to as the (linear) filter for voxel k. Such a filter shows to
which pixels the voxel is responsive. Also, the filters provide insight in
the sparseness and smoothness of parameter estimates under different
regularization schemes.

Decoding
For the decoding analysis, we estimated a Gaussian image prior

based on 700 images per character which had not been used in the
experimental run but came from the same handwritten characters data-
base. Subsequently, we used themode of the posterior density, comput-
ed using Eq. (7), to produce image reconstructions. For decoding, only
those voxels were used whose explained variance exceeded zero. This
was implemented by setting all filters of the remaining voxels to zero
such that they exerted no influence on the reconstruction. Reconstruc-
tion quality was measured in terms of the correlation between an orig-
inal and its reconstruction.

A binomial test comparing the correlations obtained for different
models served to show which regularizer performed best. To quantify
whether an observedmean correlation for the twelve reconstructed im-
ages per character was significantly better than chance-level perfor-
mance, we estimated a p-value based on a permutation test which
compared the observed mean correlation with the mean correlation
computed for random reconstructions. These random reconstructions
were generated by sampling from the image prior. The rationale for
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this significance test is that, if the BOLD responses convey information,
then the informed reconstructions should be closer to the true images
than reconstructions obtained by sampling from the prior.

Finally, correlation matrices were estimated visualizing the correla-
tion between all original stimuli and all reconstructions. Thesematrices
were sorted to show the rank of the reconstruction that belonged to the
original relative to all other reconstructions. Ranks below the diagonal
indicate that the reconstructions matched with their originals com-
pared to random guessing.

Results

In the following, we discuss results obtained formodels that employ
different input data or different regularizers.We separately describe the
outcomes of the encoding analyses and decoding analyses that have
been performed.

Encoding analysis

Fig. 1 depicts the summed explained variance for all sets of charac-
ters, averaged over subjects. A trend can be observed that encoding per-
formance increases for all regularizers when the size of the input data
increases. For the ridge and graphridge regularizers, the increase is not
quite as dramatic as for the other three regularizers, as they already per-
form quite well given limited input data.

Fig. 2 shows the explained variance for all voxels on a logarithmic
scale, sorted from highest to lowest explained variance, for all three
participants. Panel 2A shows results obtained when using instances
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belonging to one character as input data. Panel 2B depicts results
when using instances of all six characters as input data. For conve-
nience, in the remainder, we refer to these datasets as the small dataset
and large dataset, respectively. For the small dataset, fewer voxels with
above-zero explained variance remained compared to the large dataset.
At the same time, maximal explained variance was consistently higher
for the small dataset as compared with the large dataset. For the small
dataset, ridge and graphridge regularizers outperformed the other
regularizers, since explained variance was consistently higher. Further-
more, for these two regularizers, more voxels contributed to themodel,
as can be seen in the tail of the figures. For the large dataset, differences
are less obvious. Still, significance tests for the three participants show
that the ridge regularizer significantly outperforms lasso, graphnet
and elastic net regularizers for the large dataset as well (p b 10−4 for
S01, S02 and S03, Bonferroni corrected for number of comparisons).
Furthermore, graphnet and elastic net regularizers score significantly
higher on explained variance than lasso and graphridge regularizers
(p b 10−4 for all participants, Bonferroni corrected). The superior per-
formance of some regularizers on the large dataset seems to be driven
Fig. 4. Explained variance per voxel, plotted on the inflated visual cortex of the left and right hem
location of the fovea. Numbers between parentheses show the percentage of selected voxels w
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by the high number of voxels in the tail that still add some explained
variance to the model.

Fig. 3 depicts examples of voxel-wise linear filters bk obtained for Sub-
ject 3. Fig. 3A shows filters obtained with the small dataset whereas
Fig. 3B shows filters obtained with the large dataset. The sparseness of
filters estimated by the lasso, elastic net and graphnet regularizers is
clearly visible, in contrast to filters obtained with graphridge and ridge
regularizers. Furthermore, graphnet and graphridge regularizers lead to
filters that smooth regression coefficients between neighboring pixels.
Moreover, the filters for small input data clearly reflect the structure
present in the input data. The filters for the large dataset seem to be less
tuned to a single character though characteristics of the input data are
still visible. Fig. 3C depicts for one voxel how the filters change as a func-
tion of themixing parameter αwhen using the elastic net regularizer and
the graphnet regularizer. Note that the other regularizers are included
here as special cases with α = 0 or α = 1. Clearly, the tradeoff between
sparseness and smoothness is strongly dependent on the choice of α.

Fig. 4 shows the projection of the explained variance on an inflated
brain for Subject 3 when training on either the small or large dataset.
isphere for Subject 3. The yellow border outlines visual area V1. The letter ‘F’ indicates the
hose explained variance was above zero, averaged over subjects.

of perceived images from human brain activity, NeuroImage (2013),
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V1 is indicated by a yellow contour and plotted for left and right hemi-
spheres. Evidently, a smaller number of voxels is includedwhenmodels
are trained on the small dataset compared to when models are trained
on the large dataset. Strongest contributions seem to come from foveal
rather than peripheral voxels. This observation becomes more pro-
nounced when a large dataset is used. Finally, note that voxels with
high explained variance tend to cluster together.
Decoding analysis

Fig. 5 shows the average correlation ρ between the originals and
their reconstruction for all models for different sizes of input data aver-
aged over all participants. Overall, the graphnet regularizer seems to
perform best, but the differences in reconstruction quality of the differ-
ent regularizers are negligible. When the dataset increases in size, the
graphridge regularizer performs less well compared to the other
regularizers. When training on all characters, the elastic net, graphnet
and lasso regularizers were shown to outperform the graphridge
regularizer in terms of decoding performance (p b 10−4, Bonferroni
corrected for number of comparisons). The ridge regularizer also
performed less well than other regularizers although differences were
marginally insignificant.

Fig. 6A depicts all reconstructions for participant S03 for the small
dataset that contains only presentations of the character ‘B’. The
obtained reconstructions are all unique and share certain characteristics
of their corresponding original images. Also, reconstructions 7, 11 and
12 seem to contain two superimposed characters. This might be due
to the fact that the BOLD response was estimated using two representa-
tions of the same character. An alternative explanation is that the recon-
structions represent two consecutively presented characters which
bothmodulate the BOLD response due to the sluggishness of the hemo-
dynamic response function. Nevertheless, reconstructions are of high
quality in general. Optimal reconstruction performance for the small
dataset was achieved by graphnet regression (cf. Fig. 5). Fig. 6B depicts
reconstructions of different letters when models were trained on the
large dataset containing all characters. All regularizers produce good re-
constructions of the originals. These results demonstrate that instances
belonging to different letter classes are easily distinguished.

The question remains to what extent reconstructions rely on the
contribution by the likelihood versus the prior. In order to address this
question, we also estimated reconstructions using either the likelihood
or the prior. These reconstructions correspond to the maximum
B BR BRA BRAI BRAIN BRAINS

0.2

0.3

0.4

0.5

0.6 Lasso
Graphnet
Elastic net
Graphridge
Ridge

Characters in selection

Fig. 5. Decoding performance quantified in terms of the average correlation between
original and reconstructed images for all regularizers and for different sizes of the input
data, averaged over participants. Error bars indicate standard error of the mean.
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likelihood estimate (MLE) given by the mode of Eq. (4) and to the
mode of Eq. (5), respectively. Fig. 6C shows reconstructions based on
the likelihood, based on the prior, and based on both. A comparison of
the decoding performance shows that reconstruction quality heavily
depends on both the information conveyed by the likelihood as well
as the constraints imposed by the image prior.

In order to examine the quality of individual reconstructions, Fig. 7A
shows the correlation matrices for all regularizers for the large dataset
containing all six characters. Each correlation matrix shows the correla-
tion coefficient between all originals and all reconstructions. The block
diagonal structure of the correlation matrices reflects the fact that re-
constructions tend to look like within-class exemplars. Note also that
some of the letter classes are more easily confused, notably ‘B’ versus
‘S’ and ‘R’ versus ‘A’.

Fig. 7B shows the sorted correlation matrices. That is, for each origi-
nal the reconstructions are sorted according to their rank. The rank of
the correct reconstruction is indicated in dark red. Clearly, reconstruc-
tions outperform random reconstructions. When comparing recon-
structions obtained with the large dataset with samples drawn from
the image prior we found that these were significantly better than
chance (p b 10−4, Bonferroni corrected for number of comparisons).
We also compared reconstructions using our approach with those
obtained using an empirical prior as employed by Naselaris et al.
(2009). This procedure amounts to selecting that image in the image
prior which has maximal likelihood given the observed BOLD response.
The rank of the correct reconstructionwhen using this approach is indi-
cated in dark blue. These results show that the empirical prior approach
is outperformed by the explicit inversion scheme derived in this paper.

Thefinal questionwe address is howwellwe can reconstruct images
belonging to an image category which has not been observed during
training. That is, how well do we generalize to previously unseen
image categories? In order to address this question, the graphnet
model was trained six times on BOLD data associated with five out of
six letter classes for Subject 3. Subsequently, these models were used
to reconstruct letters belonging to the sixth remaining letter class. Dur-
ing reconstruction, we either used a prior for the five letter classes that
were presented during training or a prior which also incorporated the
sixth letter class present during testing. Note that both cases only used
BOLD data acquired for five letter classes. Fig. 8 shows reconstructions
obtained using either the five-letter or the six-letter prior. Decoding
performance averaged over letter subsets is ρ = 0.40 (±0.02 SEM)
for the five-letter prior versus ρ = 0.46 (±0.02 SEM) for the six-letter
prior.

Discussion

We introduced a linear Gaussian framework for reconstructing per-
ceived images frommeasured neural responses. Results show that high-
quality reconstructions can be obtained by inverting properly regular-
ized encoding models. Reconstructions relied on the use of encoding
models that explain much of the variance in BOLD responses acquired
under a rapid event-related design. While ridge regression performed
best in terms of encoding performance, graphnet regression performed
best in terms of decoding performance. Estimated filters that model
how visual stimulation leads to observed BOLD response were shown
to rely heavily on the employed regularizers (cf. Fig. 5). Decoding relied
on computing a MAP estimate as given by the mean of a multivariate
Gaussian which incorporates both prior and likelihood terms.

The high quality of the reconstructions was both driven by informa-
tion contained in the estimated responses as well as by the employed
Gaussian image prior (see Fig. 6C). Our comparison between models
trained using one letter class up to all six letter classes present in the
data showed that encoding performance tends to increase for larger
datasets. In contrast, decoding performance was shown to be quite sta-
ble for different subsets of the input data. Interestingly, decodingperfor-
mance remained good even when reconstructions were made for
of perceived images from human brain activity, NeuroImage (2013),
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Fig. 6. Reconstructions produced by the Gaussian decoding approach. (A) All reconstructions from the test set for models trained on the small dataset containing only presentations of the
character ‘B’ for participant S03. (B) A sample of reconstructions obtained withmodels trained on the large dataset. (C) Maximum likelihood estimates obtained when using the graphnet
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previously unseen letters, especially when the prior was extended to
take the new letter class into account (cf. Fig. 8). This suggests that ge-
neric decoders may be trained on arbitrary input data and tailored to
the specifics of a particular dataset by adjusting the prior.

An important observation is that the learned filters do not only re-
flect the receptive field of individual voxels but also statistical regulari-
ties that are present in the input data. This holds more strongly for
smaller datasets (see Fig. 5). This behavior can be understood by realiz-
ing that, even if a voxel responds selectively to one location in the visual
field, other locations in the visual field could be active simultaneously
due to regularities in the input data. For example, the letter ‘I’ will
tend to activate the vertical midline. For this reason, locations in the
visual field that do not fall within a voxel's receptive field but are corre-
latedwith locations that do fall within the receptive field are still able to
predict voxel responses. The emergence of filters driven by input statis-
tics will hold for any dataset whose features are not statistically inde-
pendent, including natural images (Simoncelli and Olshausen, 2001).
This implies that learned filters should be interpreted with care.
Please cite this article as: Schoenmakers, S., et al., Linear reconstruction
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In this work, we compared several different regularizers in terms of
encoding and decoding performance. All regularizers yielded high-
quality reconstructions. Overall, the graphnet regularizer tended to per-
form best in terms of decoding performance, even though it performed
less well in terms of encoding, especially for a small amount of input
data (cf. Figs. 1 and 5). In general, encoding performance and decoding
performance did not show a direct linear relationship. This could be due
to the fact that decoding performance not only depends on the precision
with which BOLD responses are predicted but also on the properties of
the filters bk estimated by the different models. For example, the joint
constraint of sparseness and smoothness imposed by the graphnet
regularizer induces a strong inductive bias. This inductive bias could re-
sult in filters that impose stronger or more independent constraints on
the reconstructions.

We have shown in this study that our framework allows high-
quality reconstructions. The question remains how reconstruction qual-
ity could be further improved. In terms of data acquisition, we used a
rapid event-related design where each unique stimulus was shown
of perceived images from human brain activity, NeuroImage (2013),

http://dx.doi.org/10.1016/j.neuroimage.2013.07.043


-0.2

or
ig

in
al

s

B

R

A

I

N

S

Lasso

AB I NR S
reconstructions

Elastic net

AB I NR S
reconstructions

Graphridge

AB I NR S
reconstructions

Ridge

AB I NR S
reconstructions

Graphnet

AB I NR S
reconstructions

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A

B

or
ig

in
al

s

reconstructions reconstructions reconstructions reconstructions reconstructions

Fig. 7. Reconstruction quality of individual exemplars. (A) Correlation matrices for all regularizers for the large dataset containing all six characters. Entries of the correlation matrix indi-
cate the correlation between an original and reconstructed image. Dark blue lines are used to separate the letter classes. (B) Correlation matrix with rows sorted according to the corre-
lation between the original and its corresponding reconstruction. For each row, the correlations between an original and all reconstructions were again sorted. The rank of the correct
reconstruction when using our explicit inversion scheme is indicated in dark red. The rank of the correct reconstruction when using an empirical prior is indicated in dark blue. The di-
agonal indicates the rank which is expected based on chance.

9S. Schoenmakers et al. / NeuroImage xxx (2013) xxx–xxx
twice. BOLD responses acquired at amagnetic field strength of 3 T were
quantified in terms of betaweights as estimated using the general linear
model (Mumford et al., 2011). Other experimental designs and other
approaches to BOLD deconvolution might lead to better decoding per-
formance. Also, acquisition at higher field strengths, allowing imaging
of BOLD responses at the level of cortical columns or layers, is expected
to yield considerably improved decoding results (Polimeni et al., 2010).

In terms of the employed linear decoding approach, various modifi-
cations could further improve reconstruction performance. First, pa-
rameters bσ2

k , which model the variance of the BOLD response, have
been derived from training data, which may lead to over-optimistic
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Fig. 8.Generalization to new letter classes. Each letter is predicted usingmodels trained on BOL
shown to substantially improve the reconstructions.
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estimates. Estimation of the variance parameters from test data using
a proper nested cross-validation, though costly, might lead to improved
reconstructions.

Second, the regularization approaches could be optimized even fur-
ther, either by using a different coupling matrix, employing adaptive
shrinkage, or using more robust loss functions than the squared loss
function used here Grosenick et al. (2013).

Third, in our current approach, predictions were based on pixel in-
tensities. Linear transformations of these intensities might provide bet-
ter basis functions and could lead to better reconstructions while still
allowing a closed-form solution. That is, we can trivially include any
D data for the remaining letter classes. Extending the prior to include the new letter class is

of perceived images from human brain activity, NeuroImage (2013),

http://dx.doi.org/10.1016/j.neuroimage.2013.07.043


10 S. Schoenmakers et al. / NeuroImage xxx (2013) xxx–xxx
desired linear transformation Ux of the inputs by replacing B with UeB
and/or replacing R−1 with UeR−1

U⊤ in Eq. (7). Note, however, that
such an approach would need to be accompanied by restrictions on
the linear transformations since otherwise no expressive power would
be gained. Restrictions can take the form of allowing only a restricted
number of basis functions or by regularizing the parameters of the linear
transformation.

Finally, the current approach could be improvedbyusing richer image
priors that still afford the analytical approach put forward in this paper.
For example, the prior could be given by a mixture of Gaussians. Such a
model could be estimated using an expectationmaximization (EM) algo-
rithm (Dempster et al., 1977). In case the image categories are knownbe-
forehand, mixture components can be estimated independently without
resorting to an EM approach. The mixture model could also be made de-
pendent on semantic information as in Naselaris et al. (2009). That is, we
could use a discriminative approach to predict themixtureweights, effec-
tively adapting the image prior based on semantic information.

Summarizing, results show that good reconstructions can be
obtained by inverting properly regularized encoding models in the lin-
ear Gaussian setting. Results show that the graphnet-regularized linear
Gaussianmodel performs best in terms of decoding performance and at
the same time learns smooth yet localized linear filters. When speed is
of the essence, the kernel formulation of the ridge-regularized linear
Gaussian model may be the preferred choice. The question remains
how these models compare to more complex decoding approaches
that rely on non-linear transformations (Kay et al., 2008; van Gerven
et al., 2010; Vu et al., 2011). In order to address this question, source
code implementing our approach is available upon request.We propose
that the outlined analytical approach serves as a baseline against which
to compare other approaches.
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Appendix A. Analytical expression for the regression coefficients

Here, we derive the analytical expression for the regression coeffi-
cients (14), as well as the kernel formulation (15), in case α = 0. Con-
sider a coefficient vector b and responses y. We wish to computebb ¼ argminbE bð Þ with objective function

E bð Þ ¼ arg min
b

1
2N

∥y−Xb∥22 þ
λ
2
b⊤Gb

� 	
:

The gradient of the objective function takes the form

∇E bð Þ ¼ 1
N

X
n

b⊤xn−yn
� �

xn
� �⊤ þ λ

2
Gþ G⊤

� �
b:

Setting to zero, we obtain

0 ¼ −
X
n
yn xn
� �⊤ þ b⊤X

n
xn xn

� �⊤
þNλ

2
Gþ G⊤

� �
b

¼ −X⊤yþ X⊤Xbþ eGb
with symmetric eG ¼ Nλ

2 Gþ G⊤� �
. We write

X⊤Xbþ eGb ¼ X⊤Xþ eG� �
b ¼ X⊤y: ðA:1Þ

Solving for b, we obtain the standard analytical solution

b ¼ X⊤Xþ eG� �−1
X⊤y:
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Alternatively, we can write eb ≡ eGb ¼ X⊤ y−Xbð Þ ¼ X⊤β with
β ≡ y − Xb. Hence,ebcan bewritten as a linear combination of the train-
ing samples. By substituting eb with this dual representation into
Eq. (A.1), we obtain

X⊤XeG−1 þ I
� �eb ¼ X⊤y⇒

X⊤XeG−1 þ I
� �

X⊤β ¼ X⊤y⇒

β ¼ y−XeG−1
X⊤β⇒

XeG−1
X⊤ þ I

� �
β ¼ y⇒

β ¼ XeG−1
X⊤ þ I

� �−1
y⇒eb ¼ X⊤ XeG−1

X⊤ þ I
� �−1

y⇒

b ¼ eG−1
X⊤ XeG−1

X⊤ þ I
� �−1

y;

which is the kernel formulation of Eq. (15). Note that this formulation
requires eG to be invertible. This does not hold in case of graphridge re-
gression in conjunctionwith the graph Laplacian. In that case, a small di-
agonal term can be added to the graph Laplacian for stability.

Appendix B. Regularization path

As the regularization path, we take a uniform interval on the log scale
from λmax to λmin ≡ 10−4λmax. The parameter λmax is defined to be that
value of λ for which one of the variables enters the model. It holds that

λmax ¼ 1
αN

max
i

Xyð Þi


 

: ðB:1Þ

Proof. Define the objective function

E bð Þ ¼ L bð Þ þ Rλ;G bð Þ

¼ L bð Þ þ λ α
X
i

jbij þ 1−αð Þ1
2

X
i; j

biGijb j

0@ 1A;

with L(b) ≡ ∥ y − X⊤b ∥ 2
2/2N. A variable is includedwhenever the solu-

tion bi = 0 becomes unstable. Now, consider changing bi away from
zero. Since variables bj with i ≠ j are fixed at zero, we can restrict our-
selves to study the dependency of E(b) on those terms that have ele-
ments in common with bi and are non-zero:

E bið Þ≡ L b�
i bið Þ� �þ λ αjbij þ 1−αð Þ1

2
Giib

2
i

� �
þ C; ðB:2Þ

where E(bi) ≡ E(bi∗(bi)) with bi∗(bi) the zero vector whose i-th element
is replaced by bi. Note that this expression is equivalent to the expres-
sion we obtain using an elastic net regularizer.

The solution bi = 0becomes unstable if it holds that E(bi) b E(0) for
some infinitesimally small change in bi. A first-order Taylor expansion
for bi close to 0 yields:

E bið Þ≡ E 0ð Þ þ gibi þ λ αjbij þ 1−αð ÞGiib
2
i

� �
; ðB:3Þ

where here and in the following we ignore higher order terms and we
defined gi ≡

∂L bð Þ
∂bi

j
b¼0

for ease of notation. A variable bi thus enters the
model at

λi ≡ max
bi

− gibi
αjbij þ 1−αð ÞGiib

2
i

" #
¼ max

bi
− gi sgn bið Þ

α þ 1−αð ÞGiijbij
� �

:

ðB:4Þ

Since the numerator is independent of themagnitude of bi and since,
assuming positive Gii, |bi| only reduces the magnitude of the quantity
of perceived images from human brain activity, NeuroImage (2013),
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between brackets, the optimal value of bi is an infinitesimally small
value whose sign is such that the quantity between brackets becomes
positive. Since we can ignore the second term in the denominator as
bi → 0, we obtain

λi ¼
1
α

∂L bð Þ
∂bi j

b¼0





 



: ðB:5Þ

It follows that

λmax ¼ 1
α

max
i

∂L bð Þ
∂bi j

b¼0





 



 ¼ 1
αN

max
i

Xyð Þi


 

:
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