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Abstract—New computational models have made it possible to
reconstruct perceived images from BOLD responses in visual
cortex. We expand a linear Gaussian framework for percept
decoding with Gaussian mixture models to better represent the
prior distribution of images. In our setup, different mixture
components correspond to different letter categories. Our frame-
work not only leads to more accurate reconstructions, but also
automatically infers semantic categories from low-level visual
areas of the human brain.

I. INTRODUCTION

Machine learning techniques have made it possible to ac-
curately decode mental states from neuroimaging data. Espe-
cially visual perception is a highly investigated modality since
the visual system is relatively well understood and covers
a large portion of the brain. Low-level visual features have
been shown to allow the reconstruction of perceived stimuli.
For instance, center-surround receptive fields have been used
to reconstruct natural scenes from cat LGN with invasive
recordings [1]. More recently, computational models operating
on low-level visual features have been demonstrated to allow
reconstruction of perceived images from V1 [2], [3].

A big challenge in fMRI-based image reconstruction is the
relatively poor signal-to-noise ratio. In a probabilistic setting,
reconstructions can be improved by combining the likelihood
function with an image prior using Bayesian inversion. While
the likelihood function models fMRI responses to the pre-
sented images, the image prior models the statistics of the
input data [4].

A feasible image prior is one that encodes the covariance
structure between pixels. Unfortunately, such a unimodal prior
fails to capture higher-order statistical properties, for example
when images belong to different semantic categories. To
overcome this problem, we can try using multiple priors, one
prior for each category. Previous studies have shown that it
is possible to get an accurate read out of the category of a
perceived image from fMRI data [5], [6], [7], [8]. In [9] it was
shown that the use of semantic information greatly improved
image reconstruction.

Here, we present a framework for image reconstruction
using Gaussian mixture models in which semantic information
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Fig. 1. Schematic diagram of the reconstruction steps. A subject looks
at an image. The corresponding brain response is measured with fMRI and
would, without any further knowledge, result into a noisy maximum likelihood
reconstruction. Combining the likelihood of the brain response with a prior
on images leads to a much more accurate reconstruction. A multimodal prior,
as modeled by a mixture model, significantly improves over a unimodal prior.

can be integrated. That is, the image prior is taken to be
multimodal, as captured by a mixture model whose mixture
components reflect semantic categories for which the mixture
weights are estimated from the fMRI data. We show that
this formulation gives an analytical procedure to create image
reconstructions from fMRI data that improves on previous
work that makes use of a unimodal prior [4]. We evaluate the
Gaussian mixture model by applying it to an fMRI dataset of
people viewing handwritten characters. Figure 1 outlines the
difference between the conventional approach and the mixture
model approach.978-1-4799-4149-0/14/$31.00 2014 IEEE



II. METHODS

A. Gaussian mixture models

As in [4], we make use of a linear Gaussian encoding
model with image x = (x1, . . . , xp)′ ∈ Rp and the associated
measured response vector y = (y1, . . . , yq)′ ∈ Rq:

y = B′x + ε

with ε zero mean normally distributed noise. Regression co-
efficients B are estimated using regularized linear regression.
The likelihood function is then given by

P (y|x) = N (y; B′x,Σ) .

with diagonal covariance matrix Σ. We assume that this
mapping is independent of the context, e.g. the category i,
in what follows.

For the prior distribution over images x, we consider
a Gaussian mixture model, where each mixture component
corresponds to a different (letter) category:

P (x) =
∑
i

πiN (x; mi,Ri) ,

with πi the prior probability of category i, and mi and Ri the
mean and covariance matrix, respectively, of the corresponding
Gaussian. The means and covariances are estimated from a
separate image data set.

In this probabilistic framework, decoding boils down to
computing the probability of a reconstruction x given an fMRI
image y. Following standard probabilistic inference, see e.g.,
[10], we obtain

P (x|y) =
∑
i

P (i|y)P (x|y, i) ,

where both P (x|y, i) and P (i|y) follow from the application
of Bayes’ rule. That is,

P (x|y, i) =
P (y|x)P (x|i)

P (y|i)
(1)

with

P (y|i) =

∫
dx P (y|x)P (x|i) . (2)

and

P (i|y) =
πiP (y|i)∑
j πjP (y|j)

, (3)

Since both the likelihood P (y|x) and the prior P (x|i) have
the form of a Gaussian in x, so does their product. Therefore,
deriving Equations (1), (2) and (3) is straightforward and we
merely state the result here. The posterior P (x|y, i) of a recon-
struction x given an fMRI image y under the assumption that
the corresponding category equals i is a Gaussian distribution
with mean ni(y) and variance Qi, which can be computed
through

ni(y) = Qiz̄(y) + Uimi

where

Ui ≡ (I + RiD)
−1

D ≡ BΣ−1B′

Qi ≡ UiRi

z̄(y) ≡ BΣ−1y ,

and with I the identity matrix. The posterior probability P (i|y)
gives the probability that the category is indeed i given the
fMRI image y. It can be shown to obey

logP (i|y) = log πi +
1

2
log det Ui +

1

2
z̄(y)′Qiz̄(y)

− 1

2
m′iDUimi + z̄(y)′Uimi + C ,

where constants C can be ignored when normalizing P (i|y)
to sum to one since they are independent of i.

For the final reconstruction we then obtain

x∗(y) =
∑
i

wi(y)ni(y) (4)

with weights wi(y) ∝ P (i|y)1/T . Varying the temperature T
introduces a natural way of interpolating between the most
probable category and equal mixing of categories.

For temperature T = 1, we have wi(y) = P (i|y) and
the reconstruction is a standard weighted average of the
reconstructions for each of the categories. In the limit T ↓ 0,
we zoom in on the reconstruction ni∗(y) corresponding to
the most probable category i∗ = argmaxi P (i|y). When no
temperature is specified the model with T = 1 is implied.

B. Data Acquisition

To investigate the performance of the Gaussian mixture
model we tested it on an fMRI dataset. The participant per-
ceived instances of handwritten characters which were evenly
distributed over six letter categories (B, R, A, I, N, S). The
total set of images viewed by the participant contained 360
instances. BOLD estimates were acquired from the primary
visual area V1 as in [4]. A regularized linear regression model
was estimated to form a pixel-to-BOLD mapping. Graphnet
was used for the regularisation of the linear model [11], which
introduces sparseness and smoothing to the model. Image
reconstructions were obtained via application of Eq. (4) for
different settings of the temperature parameter. Class-specific
means and covariances were estimated from a separate dataset
containing 700 handwritten instances per letter category.

In order to quantify how much the reconstructions were
alike to the originals the structural similarity metric (SSIM)
was used. SSIM was specifically developed to match the
properties of the human visual system when determining to
what extent two images are alike. The measure is similar to
taking the correlation between two images except that it takes
into account noise and distortion of images and indexes images
based on their structural similarity [12].



III. RESULTS

In order to assess the performance of the Gaussian mixture
model we compare the reconstructions that we obtain by using
the multimodal prior for separate character classes with the
reconstructions that are obtained when using a unimodal prior
that contains all classes in one unimodal prior.

Figure 2 depicts the mixture weights wi at T = 1 for the
72 instances of the test set. On the diagonal, blocks with high
values are visible, demonstrating that many of the instances
are correctly identified with the highest probability. In 63% of
the instances the maximum of wi provides the correct class.
At chance level we would expect to get 17% of the instances
correct. Furthermore, the figure reveals that often one or just a
few categories actually contribute to the mixture. This ensures
that some of the categories that are deemed very unlikely will
not contribute to the reconstruction, which reduces the chance
of a distorted result.
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Fig. 2. Mixture weights per class for 72 test characters (twelve exemplars
for all six categories).

Figure 3 displays the structural similarity metric per recon-
struction for the multimodal prior relative to the unimodal
prior in separate plots for each category. The plus sign
represents correctly classified reconstructions and the circles
show wrongly classified reconstructions. It can be seen that
the multimodal prior improves upon the unimodal prior in all
correctly classified cases and even in some of the wrongly clas-
sified cases. A paired samples t-test shows that the multimodal
prior gives rise to a significant improvement (p < 10−11)
over the reconstructions relative to the reconstructions for the
unimodal prior.

Figure 4 depicts in blue the average structural similarity
score for different values of the temperature T . In red, the
mean SSIM for the unimodal prior is shown. The average
for the multimodal prior reaches a maximum when the tem-
perature approaches zero. This shows that, according to the
similarity metric, the best reconstructions are not formed when

the mixture of categories is used, but rather when the category
is chosen that is most likely according to the Gaussian mixture
model. A paired samples t-test shows the similarity metric to
be significantly lower (p < 0.05) for T = 1 compared with
T = 0.
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Fig. 4. Mean structural similarity metric for the multimodal prior at different
temperatures in blue and in red the mean structural similarity metric for the
unimodal prior.

Figure 5 demonstrates three sets of examples of the re-
constructions. In the first column the original images are
shown. The next column visualizes the reconstructions based
on the unimodal prior, followed by the reconstructions with the
multimodal prior at T = 1 and T = 0. Panel A illustrates some
examples of reconstructions that lead to similar reconstructions
for the different priors. Panel B contains examples that have
greatly improved because of the mixture over categories and
even more by taking the most likely category as according
to the mixture weights. Finally, panel C shows examples
of reconstructions that are incorrect under all reconstruction
approaches. Notice that panel C presents reconstructions that
look correct, but are actually showing reconstructions of the
wrong character. This is particularly prominent for the case
where T = 0.

B CA

Fig. 5. Examples of reconstructions. The first column in a panel shows the
original image, the second column shows the reconstructions based on the
unimodal prior, the third column shows the reconstructions that follow from
the multimodal prior and in the fourth column the reconstructions are shown
for the most likely category. Panel A demonstrates examples of reconstructions
that are good for all types of prior, Panel B shows examples that improve under
the different priors and Panel C represents reconstructions that fail.
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Fig. 3. Structural similarity metric per reconstruction for the multimodal prior relative to the unimodal prior in separate plots for each category. The plus
signs correspond to image reconstructions for which the most likely category does happen to coincide with the actual category, the circles correspond to
incorrect classifications.

IV. CONCLUSION

We not only showed that Gaussian mixture models lead
to more accurate reconstructions, but also that by using such
models one can automatically infer higher-order semantic cat-
egories from a low-level visual area in the brain. Furthermore,
it appears that zooming in on the most probable category leads
to better reconstructions (in terms of SSIM) than taking a
standard weighted average over all categories. The drawback
of choosing the most probable category is that reconstructions
may converge towards the incorrect stimulus category.

The performance of correctly classifying 63% over a chance
level of 17% is impressive for a multi-class classifier, but from
a decoding perspective the model requires further improve-
ment. Based on our experiences we suggest several potentially
beneficial approaches to boost classification rate.

For one, it will be worthwhile to improve neuroimaging data
quality using better acquisition protocols, more sophisticated
analysis methods and longer recordings.

A second point of interest is the prior data. It might be the
case that some of the character features are underrepresented
in the data set used to estimate the prior.

Another improvement might be to include more brain data
from extrastriate visual areas. The brain’s ventral stream
has a hierarchical organization leading all the way down to
the anterior temporal lobe. These higher level brain regions
provide a more explicit representation of semantic information
which is expected to improve classification performance like
in [9]. In contrast, we now use voxels in visual area V1.

Finally, the framework may be enhanced by learning cate-
gories directly from the data using expectation maximization.
The inferred category structure is then driven by both image
data and by the neural recording and this may improve
estimation of mixture weights.

Summarizing, our results show that an analytical framework
with a mixture model for the prior is effective in reconstructing
images with an underlying class structure.
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