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Better acquisition protocols and analysis techniques are making it possible to use fMRI
to obtain highly detailed visualizations of brain processes. In particular we focus on the
reconstruction of natural images from BOLD responses in visual cortex. We expand
our linear Gaussian framework for percept decoding with Gaussian mixture models to
better represent the prior distribution of natural images. Reconstruction of such images
then boils down to probabilistic inference in a hybrid Bayesian network. In our set-up,
different mixture components correspond to different character categories. Our framework
can automatically infer higher-order semantic categories from lower-level brain areas.
Furthermore, the framework can gate semantic information from higher-order brain areas
to enforce the correct category during reconstruction. When categorical information is
not available, we show that automatically learned clusters in the data give a similar
improvement in reconstruction. The hybrid Bayesian network leads to highly accurate
reconstructions in both supervised and unsupervised settings.

Keywords: fMRI, reconstruction, Bayesian network, data fusion, semantic categories, unsupervised learning,

probabilistic inference

1. INTRODUCTION
Machine learning techniques have made it possible to accu-
rately encode and decode mental states from neuroimaging data.
Neural encoding and decoding are topics of key importance in
contemporary cognitive neuroscience. Especially visual percep-
tion has received a large amount of attention since the visual
system is relatively well understood and covers a large portion
of the brain. While the first decoding studies focused exclu-
sively on the prediction of discrete states such as object cat-
egory (Haxby et al., 2001) or stimulus orientation (Kamitani
and Tong, 2005), more recent work has focused on the predic-
tion of increasingly complex stimulus features, culminating in
the reconstruction of the contents of perceived images (Thirion
et al., 2006; Kay et al., 2008; Miyawaki et al., 2008; Naselaris
et al., 2009; van Gerven et al., 2010; Güçlü and van Gerven,
2014). Striking reconstructions have been made of handwrit-
ten characters (Schoenmakers et al., 2013), faces (Cowen et al.,
2014), natural images (Naselaris et al., 2009) and even the gist
of video clips (Nishimoto et al., 2011). Reconstructing stim-
uli from the neuronal response can be done by selecting the
most probable image from a prior set of images (Naselaris
et al., 2009). While this leads to good results, we showed
that Bayesian inversion of the neuronal response yields more
accurate reconstructions for our dataset (Schoenmakers et al.,
2013).

Encoding and decoding are intimately related via Bayes’ rule
where the probability P(x|y) of a stimulus x given a response y,
is proportional to the product of a likelihood term P(y|x) and
a prior P(x) (Friston et al., 2008; Naselaris et al., 2010). The
likelihood embodies a forward model of how the stimulus fea-
tures are encoded in the neural response. The prior specifies how
likely a stimulus is before observing any data. Reconstruction is
then accomplished by inverse inference in a generative model,
where both prior knowledge of images and the BOLD response
transformed to image space contribute to the reconstructions.
Thirion et al. (2006) advocated this approach to reconstruction
before and it has proven to be successful. Here we expand this
framework to a hybrid Bayesian network that more accurately
describes the stimulus features by also incorporating higher-
level semantic information. Through data fusion, the higher-level
semantic information can be joined with the low-level informa-
tion to obtain more accurate reconstructions. This is similar in
spirit as the work of Naselaris et al. (2010). However, in contrast
to that study, our approach provides an analytical solution for
reconstruction.

We present a framework for image reconstruction using
Gaussian mixture models. Whereas before we made use of a
unimodal prior containing all stimulus categories Schoenmakers
et al., 2013, here we use Gaussian mixture models where the
image prior is taken to be multimodal, by splitting the prior
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into separate groups of images. Each group results in a mix-
ture component that embodies a set of images from the same
category. The weights for the mixture components are esti-
mated from the fMRI data. The BOLD-response is translated
to image space and the resemblance to each mixture compo-
nent is calculated resulting in probabilities of belonging to each
category. These probabilities then enforce or suppress the mix-
ture components in the reconstruction. The components can be
generated in a supervised way by splitting the prior in sepa-
rate semantic categories based on image labels (Schoenmakers
et al., 2014) or the components can be estimated automatically
from the prior by learning cluster assignments based on the
stimulus features when categorical information for the prior is
unavailable.

Previous studies have shown that it is possible to get an accu-
rate read-out of the category of a perceived image from fMRI
data (Haxby et al., 2001; Cox and Savoy, 2003; Kriegeskorte et al.,
2008; Simanova et al., 2014). Naselaris et al. (2009) showed that
image reconstruction improved when semantic information was
incorporated in the forward model. In our framework semantic
information from higher order brain areas can be incorporated
by deriving semantic categories from high-level brain areas using
multinomial logistic regression. This categorical information can
then be gated to the prior to enforce the correct categorical infor-
mation during reconstruction. In some cases it can be difficult to
derive the category of handwritten characters from their low-level
features, but people are very well adapted to identifying the cor-
rect category of ambiguous characters. Hence, by gating higher
level brain information ambiguous stimuli might be resolved
more accurately.

We applied the Gaussian mixture model to reconstruct mul-
tiple handwritten characters that have been presented to sub-
jects during fMRI acquisition using a rapid event-related design.
We compare the reconstruction results for supervised multi-
modal decoding, in which stimulus categories are known, and
unsupervised multimodal decoding, in which stimulus cate-
gories are unknown, with unimodal decoding which was the
method proposed in our previous work (Schoenmakers et al.,
2013). Furthermore, we extend the supervised approach to allow
for semantic gating, incorporating information from high-level
visual areas to drive the prediction of stimulus category. We show
a major improvement with more accurate reconstructions than
could be obtained using unimodal decoding. The key feature of
our approach is the simplicity of our analytical hybrid Bayesian
network while not having to make concessions on reconstruction
quality.

2. MATERIAL AND METHODS
2.1. ENCODING
As in Schoenmakers et al. (2013), we use a linear Gaussian encod-
ing model with image x = (x1, . . . , xp)′ ∈ R

p and the associated
measured brain response y = (y1, . . . , yq)′ ∈ R

q:

y = B
′
x + ε (1)

with ε zero-mean normally distributed noise. Regression coef-
ficients B are estimated using regularized linear regression as

in Güçlü and van Gerven (2014) since it is computationally fast.
The likelihood function is then given by

P(y|x) = N (y; B
′
x,�) . (2)

where B = (β1, . . . ,βq) ∈ R
p×q and � = diag (σ 2

1 , . . . , σ 2
q ) ∈

R
q×q. We assume that this mapping is independent of the con-

text (e.g., the category). Let X = (x1, . . . , xN )′ ∈ R
N×p denote

the design matrix where xj denotes the stimulus presented at the
j-th trial. Let yi = (y1

i , . . . , yN
i ) denote the associated responses

for the i-th voxel. For each voxel i, we minimize the l2-penalized
least squares loss function to estimate β i:

β̂ i = arg min
β i

[
1

N
||yi − Xβ i||22 + λi||β i||22

]
(3)

where λi ≥ 0 controls the amount of regularization. Coefficients

β̂ i can be obtained as follows:

β̂ i = (X′X + λiIp)−1X′yi . (4)

For efficiency we can use a singular value decomposition to
reduce the complexity of the estimation of β i from O (

p3
)

to
O (

pN2
)

(Hastie et al., 2009; Murphy, 2012).
We use stratified K-fold cross-validation with K = 5 to esti-

mate λi and σ 2
i . We first define a grid of values �i = (λ1

i , . . . , λ
L
i )

based on the effective degrees of freedom (Güçlü and van Gerven,
2014). Next, we obtain λ̂i as:

λ̂i = arg min
λ∈�

{
var

(
ε̂1

i (λ)′ , . . . , ε̂K
i (λ)′

)}
(5)

where ε̂k
i (λ) = yk

i − Xkβ̂ i are the residuals that are estimated
using regularization parameter λ in the k-th cross-validation fold
with superscript k restricted to the trials belonging to that fold.
Finally, we obtain σ̂ 2

i as:

σ̂ 2
i = var

(
ε̂1

i

(
λ̂i

)′
, . . . , ε̂K

i

(
λ̂i

)′)
. (6)

For the purpose of decoding, only the most informative voxels
with σ̂ 2

i ≤ 0.99 are included in the model.

2.2. DECODING
In our probabilistic framework, decoding comes down to com-
puting the probability of a reconstruction x given an fMRI
response vector y and cluster assignment c. Following standard
probabilistic inference, see e.g., Bishop (2006), we obtain

P(x|y) =
∑

c

P(x|y, c)P(c|y) , (7)

where both P(x|y, c) and P(c|y) follow from the application of
Bayes’ rule:

P(x|y, c) = P(y|x)P(x|c)

P(y|c)
and P(c|y) = P(c)P(y|c)∑

c P(c)P(y|c)
, (8)
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with

P(y|c) =
∫

dx P(y|x)P(x|c) . (9)

Since both the likelihood P(y|x) and the prior P(x|c) have the
form of a Gaussian in x, so does their product. The derivation of
(8) and (9) can be found in the supplementary. Here we merely
state the result.

The posterior P(x|y, c) of a reconstruction x given the brain
response y under the assumption that the corresponding cluster
equals c is a Gaussian distribution with mean nc(y) and variance
Qc, which can be computed through

nc(y) = Qc f̄ (y) + Ucmc , (10)

where

U c ≡ (I + RcD)−1 , D ≡ B�−1B
′
, Qc ≡ UcRc , and

f̄ (y) ≡ B�−1y , (11)

and with I the identity matrix. The posterior probability P(c|y) of
cluster c given the brain response y can be shown to obey

log P(c|y) = log πc + 1

2
log det Uc + 1

2
f̄ (y)

′
Qc f̄ (y)

−1

2
m

′
cDUcmc + f̄ (y)

′
Ucmc + constants , (12)

where the constants can be ignored since they are independent of
c and drop out when normalizing P(c|y) to sum to one. For the
final reconstruction we propose to consider

x∗(y) =
∑

c

wc(y)nc(y) with weights wc(y) ∝ P(c|y)1/T .(13)

For temperature T = 1, we have wc(y) = P(c|y) and the recon-
struction is a standard weighted average of the reconstructions for
each of the clusters. In the limit T ↓ 0, we zoom in on the recon-
struction nc∗(y) corresponding to the most probable cluster c∗ =
argmaxc P(c|y). In previous work we found that the best recon-
structions are obtained as T ↓ 0 (Schoenmakers et al., 2014), so
here only results are reported for the most probable cluster c∗.

2.3. SPECIFICATION OF THE IMAGE PRIOR
In previous work (Schoenmakers et al., 2013) we used a uni-
modal prior which contained the images of all categories in one
prior distribution over images. In the proposed mixture model we
consider the prior P(x) to consist of multiple Gaussian mixture
components. That is,

P(x) =
∑

c

P(c)P(x|c) (14)

with P(c) the prior probability of cluster c and P(x|c) =
N (x; mc, Rc) the Gaussian distribution of cluster c with mean
mc and covariance Rc. All images in the prior are normalized

whereafter per cluster the mean mc = 1
Nc

∑
x∈Xc

x and covari-

ance Rc = 1
Nc−1

∑
x∈Xc

xx′ are calculated, with Xc the set of all
images that belong to category c and Nc = |Xc|.

For the prior we use a separate set of images taken from the
same database as the stimuli used for the fMRI experiment (van
der Maaten, 2009). The prior set includes 700 unique instances
per character, giving a total of 4200 handwritten characters. The
Gaussian mixture components are realized in two ways. When
the image categories are known, the components can be split in
a supervised fashion leading to supervised multimodal decoding.
In case the image categories are not known, a set of images can be
split in clusters in an unsupervised way based on how similar fea-
tures are between images, resulting in unsupervised multimodal
decoding. For supervised multimodal decoding the prior is sub-
divided in six semantic categories (B, R, A, I, N, and S) as they
are categorized in the database of handwritten characters. For
unsupervised multimodal decoding the prior is divided into a
variable number of clusters as obtained by K-means clustering.
The K-means algorithm groups together characters that have sim-
ilar low-level features (Spath, 1985; Seber, 2009). To obtain the
Gaussian for cluster c, we take the cluster mean mc provided by
the K-means algorithm and calculate the covariance Rc as stated
above.

2.4. SEMANTIC GATING
By default P(c) can be specified as a uniform probability over
categories, so as 1/C. Alternatively, we can model P(c|z) by incor-
porating semantic information derived from higher-order brain
areas. We propose to learn these probabilities with multinomial
logistic regression leading to a mechanism reminiscent of the
mixture-of-experts by Jordan and Jacobs (1994). We will refer to
this approach as semantic gating.

Assume we have a stimulus-response pair in the form of a set
of clusters c ∈ (1, . . . , C) and associated measured brain response
z = (z1, . . . , zq)′ ∈ R

q where z refers to the brain responses of
a higher-level brain area. According to the multinomial logistic
regression model, the probability of the category given the brain
responses is given by:

P (c|z) = exp
(
αc + γ ′

cz
)

∑K
k = 1 exp

(
αk + γ ′

kz
) . (15)

We take the approach in Friedman et al. (2010) to esti-
mate the regression coefficients. We maximize the l1-penalized

log-likelihood to estimate
{
αk, γ k

}K
k=1 and use 10-fold cross-

validation on the train set to estimate the λ that controls the
amount of regularization:

{
α̂k, γ̂ k

}K
k = 1 = arg max

{αc,γ c}K
c = 1

⎧⎨
⎩ 1

N

N∑
j = 1

log P
(

ci
∣∣∣zi

)

−λ

K∑
k = 1

||γ k||1
}

. (16)

Our model is visualized in Figure 1, showing a graphical repre-
sentation of the Gaussian mixture model with semantic gating

Frontiers in Computational Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 173 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Schoenmakers et al. Reconstructions from human brain activity

FIGURE 1 | The hybrid Bayesian network. The probability of belonging to
cluster c is estimated from the brain response z from a high-level brain area
with the help of γ0 and γ . An encoding model provides regression
coefficients B and covariance � to reconstruct the image from the brain
response y of a lower-level brain area. The mean mc and covariance Rc of a
set of prior images enforce structure and the cluster c enforces semantic
information during the reconstruction of image x. This process can be
repeated for a set of N images.

and the variables that guide the reconstruction of a handwritten
character from the brain response.

2.5. fMRI EXPERIMENT
2.5.1. Participants
In this study three healthy native Dutch speaking participants
have been recruited to view stimuli of handwritten characters. All
participants gave written consent according to the institutional
guidelines set forth by the local ethics committee (CMO region
Arnhem Nijmegen, the Netherlands) before the experiment. The
participants were not paid for participation.

2.5.2. Stimuli
The stimuli represented grayscale handwritten characters cen-
trally presented on a black background. The images spanned 9 ×
9 degrees of visual angle (56 × 56 pixels). All character images
used in this study came from a database that was previously col-
lected by van der Maaten (2009). The character database consists
of 40,000 handwritten characters collected from 250 writers. The
images in the database are rescaled and centered such that they
fill the canvas. For this study six characters were selected: B, R,
A, I, N, and S. For each character, 60 unique instances were pre-
sented during the experiment. A total of 360 characters were
shown and this was repeated once in order to get a better estimate
of the BOLD response (see FMRI data preprocessing section).
The images were shown as flickering stimuli (200 ms ON, 200 ms
OFF) for the duration of 1 sec, followed by 3 sec of black back-
ground. A central white square served as a fixation point (0.2◦ of
visual angle). The fixation point was present at the center of the
screen throughout the whole experiment.

2.5.3. Procedure
To keep participants vigilant they were asked to focus on the fix-
ation point and to respond with a button press when the fixation
point changed color from dark gray to light blue. The fixation
point changed color once every six stimuli on average. Changes
were presented at random but evenly spread over the length of the
experiment and counterbalanced over characters. The characters
were shown in pseudo-random order by shuffling six character
sets consisting of one instance of each character in order to pre-
vent long repetitions of the same character. The experiment lasted

for 50 min with a self-paced rest period in the middle. After the
experiment, a structural scan was made. Subsequently, or in a next
session, participants viewed a rotating checkerboard wedge in
order to localize the visual areas in the brain with polar retinotopy.
The rotating wedge was presented in four blocks of 5 min.

2.5.4. fMRI acquisition
Imaging was conducted at the Donders Institute for Brain,
Cognition and Behavior (Nijmegen, the Netherlands). The func-
tional images were collected with a Siemens Trio 3 T MRI system
(Siemens, Erlangen, Germany) with an EPI sequence using a 32
channel head coil (TR = 1.74 s, TE = 30 ms, GRAPPA acceler-
ation factor 3, 83◦ flip angle, 30 slices in ascending order, voxel
size 2 × 2 × 2 mm). Head movement was restricted with foam
cushions and a tight strip of tape over the forehead. After func-
tional imaging, a structural scan was acquired using an MPRAGE
sequence (TR = 2.3 s, TE = 3.03 ms, voxel size 1 × 1 × 1 mm, 192
sagittal slices, FoV = 256 mm). In a separate session, the func-
tional localizer data was acquired, again using an EPI sequence
(TR = 2 s, TE = 30 ms, 83◦ flip angle, 33 slices in ascending order,
voxel size 2 × 2 × 2 mm, FoV = 192 mm). During acquisition an
eye tracker was employed to verify if participants were fixating
their gaze.

2.5.5. fMRI preprocessing
With the use of SPM8 software (Wellcome Department of
Imaging Neuroscience, University College London, UK), the
functional volumes were reconstructed, realigned to the first scan
of the session and slice time corrected. Participants moved less
than 0.5 mm during the sessions. For each unique stimulus, which
was presented twice to the subject, the response of each voxel to
the stimulus was computed using a general linear model (GLM).
The design matrix of the GLM was shaped by one regressor
encoding the two stimulus repetitions, one regressor encoding all
other stimuli, and nuisance regressors that encoded movement
parameters and drift terms, similar to the approach presented in
Mumford et al. (2011). The design matrix was convolved with
the canonical hemodynamic response function (HRF). The voxel
response for each stimulus was given by the beta estimate which
was normalized for each voxel. Freesurfer software was used
together with functional localizer data in order to isolate voxels
belonging to visual area V1 and V2 using established methods for
retinotopy (Sereno et al., 1995; DeYoe et al., 1996; Engel et al.,
1997).

2.6. EMPIRICAL VALIDATION
In order to validate our approach we estimated an encoding
model for the fMRI data from visual area V1 and tested dif-
ferent versions of decoding under the Gaussian mixture model
approach. In order to examine whether semantic information
can improve decoding, we compared supervised multimodal
decoding and unsupervised multimodal decoding with unimodal
decoding. In the supervised multimodal setting we also tested
whether including semantic information from a higher-level
visual area (V2) with semantic gating of the six character cate-
gories will help improve reconstructions.

To quantify the reconstruction performance we used two mea-
sures. The structural similarity metric (SSIM) was used to see
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how well low-level image features are reconstructed. SSIM is
designed to match the properties of the human visual system
when determining to what extent two images are alike (Wang
et al., 2004). SSIM is similar to correlation between images, rang-
ing from 0 to 1, except that it controls for noise and distortion
and only evaluates the structural congruency between the original
images and their reconstructions. Secondly, we computed correct
classifications to gain insight into how well high-level seman-
tic information was decoded. In supervised decoding, the letter
category l coincides with the class c and we measure the classifica-
tion performance by counting the number of correctly classified
test set images by assigning images to the most probable class
and thus letter category. For unsupervised decoding, we com-
pute the probability P(l|y) by multiplying the probability of each
cluster assignment P(c|y) with the probability of each letter cate-
gory P(l|c) and summing over the clusters c. Here we estimate the
probability P(l|c) through the frequency distribution over letter
categories of the images in the prior image set that are assigned to
cluster c. The test set image is then again classified as the letter cat-
egory with the highest probability P(l|y). Note that for unimodal
decoding classification performance is not objectively measurable
and thus not provided. For unsupervised decoding we repeated
the procedure ten times for each number of clusters because K-
means finds different clusterings each time it is executed, which
leads to variability in reconstruction quality. We used two-tailed
t-tests to compare mean decoding performances.

Furthermore, as a baseline, we compared our approach with a
simple discriminative approach to form reconstructions. This is
achieved by directly predicting pixel values from observed fMRI
responses using the same ridge regression approach as used in
the encoding model. Also, we compared the classification perfor-
mance of our approach with a simple discriminative approach.
This is achieved by directly predicting class labels from observed
brain responses using multinomial logistic regression with l1
penalty. We tested the robustness of our generative model by
extending the prior to contain the full English alphabet instead of
the subset of the six character categories. The character database
does not contain the letter “X” so those were not included.
Furthermore, some of the characters did not have 700 exemplars
to contribute. These were oversampled to arrive at 700 instances
of each category providing for a more balanced analysis.

3. RESULTS
Figure 2 shows the summation of SSIM scores for the original
images in the test set and their reconstructions in Figure 2A.
In Figure 2B the number of correctly classified reconstructions
are shown for the different forms of decoding. Figure 2A shows
that all multimodal forms of decoding perform significantly
better than unimodal decoding except for unsupervised decod-
ing with 4200 clusters (p < 10−4 for unimodal vs supervised
multimodal, supervised multimodal with semantic gating and
unsupervised multimodal except for C = 4200). Semantic gat-
ing gives a weakly significant increase over supervised multi-
modal decoding without semantic gating (p = 0.0139 over all
participants). Unsupervised multimodal decoding outperforms
supervised multimodal decoding when the number of clusters
exceeds eight for all participants. When the number of clusters

increases the SSIM scores go up until the prior is split up into
more than 600 clusters, after which the SSIM scores start to drop
again. The classification performance strongly increases when the
prior is split up into a small number of classes, but from six
clusters onwards the classification performance remains relatively
stable. Classification is similar in performance for both supervised
and unsupervised decoding, except that unsupervised decoding
results are much more variable.

Figure 3 shows comparisons between the different forms of
decoding for the individual instances in the test set for subject
S03. In the left-most panel the results for unimodal decoding vs.
supervised multimodal decoding are shown. Almost all recon-
structions improve for multimodal decoding. The middle panel
shows that semantic gating increases the reconstruction accuracy
of a small portion of the test set, while for most of the recon-
structions the performance stays the same as the performance
when reconstructing without semantic information. One instance
is reconstructed worse than without semantic information. The
right-most panel compares supervised decoding to unsupervised
multimodal decoding with 600 clusters. The great majority of
instances improves for unsupervised multimodal decoding in
comparison with supervised multimodal decoding. A salient find-
ing is that especially the reconstructions of the characters “I” are
greatly improved under all forms of multimodal decoding.

Figure 4 depicts the probability of belonging to each category
for all instances in the test set for subject S03. The classifica-
tion performance is similar for both supervised and unsupervised
decoding. The block diagonal structure demonstrates that many
of the instances are correctly identified with a high probability for
both supervised and unsupervised decoding. Furthermore, the
figure reveals that often one or just a few categories are attributed
to an instance. Often the most probable category is the category
to which the instance belongs. Semantic gating increases accuracy
for some instances and decreases accuracy for other instances.
Furthermore, the figures reveal that some characters are confused
with each other. For instance, characters “A” and “N” are often
confused and also the character “B” is confused with all other cat-
egories. The character “I” is an example of a character that is not
often confused with the other categories.

Figure 5 displays the reconstruction results for the different
decoding schemes for some exemplars in the test set for sub-
ject S03. As can be seen, unimodal decoding retrieves the gist
of the original stimulus but multimodal decoding improves the
reconstructions greatly. Furthermore, it is shown that supervised
multimodal decoding and unsupervised multimodal decoding
with more than six clusters results in reconstructions of similar
quality. For unsupervised multimodal decoding with an increas-
ing number of clusters the reconstructions are sharpened. When
the number of clusters exceeds about 20 the reconstructions start
to converge to a particular image from the prior, which might not
fully fit the original, but has a very high overlap. When the num-
ber of clusters stays under approximately 20, the reconstruction
is a mix of a large number of prior images. Below approxi-
mately 20 clusters the reconstructions match the original very
well, but the reconstructions are more blurry than the original.
Figure 5B shows some exemplars that convey that the recon-
structions are very similar across participants. Since we choose
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FIGURE 2 | (A) Summations over the SSIM score for all original images with
their reconstructions. The dashed-dotted lines show the scores for unimodal
reconstruction, the dotted lines show the scores for supervised multimodal
decoding and the dashed lines show the SSIM scores for supervised
multimodal decoding scores with semantic gating. The solid lines indicate the
SSIM score for different numbers of clusters for unsupervised multimodal
reconstruction. The error bars indicate the standard error of the mean and the

colors indicate the different subjects S01, S02, and S03. (B) Number of
reconstructions that were classified correctly in the test set of 72 images for
all participants. The dotted lines show the classification performance for
supervised multimodal decoding and the dashed lines show the classification
for supervised multimodal decoding with semantic information included. For
unsupervised multimodal decoding the mean and range are given for
different numbers of clusters.

to take the most probable cluster for reconstruction we obtain
high-quality image reconstructions, but in cases where a cluster is
chosen that represents the incorrect category, the reconstructions
are similar in their low-level features, yet incongruent in terms
of their semantics. For instance in Figure 5B the “S” for S02 is
reconstructed as a “B” for which the low-level features match the
original quite well.

As a baseline, we test a basic discriminative model with the
same ridge regression approach. The summation of SSIM scores
in the test set result in 1.44, 0.29, and 0.41 for subjects S01,
S02, and S03 respectively, which is significantly lower than all
decoding settings including unimodal decoding (unimodal: p =
0.001, other: p < 10−4 over all participants). For comparison,
learning the categories in a discriminative setting from V1 with
l1-penalized multinomial logistic regression resulted in 54.2, 44.4,
and 51.4% correctly classified test set images for S01, S02, and
S03, respectively. This is not significantly different from the results
for multimodal decoding with 55.6, 41.7, and 63.9% for each
of the participants. Similarly there is no significant difference

for supervised multimodal decoding with semantic gating or
unsupervised multimodal decoding.

Figure 6 illustrates the probabilities of belonging to the char-
acter categories for all test set images when the prior is extended
to include the complete alphabet. Still a significant number of
images is correctly identified. We obtained accuracies of 30.6,
16.7, and 45% over a 4% chance level for each of the three par-
ticipants. It is remarkable how well the characters still converge to
the correct category for subject S03. However, for the participants’
data that give rise to less accurate reconstructions, characters
often become assigned to the incorrect categories. For S03 it can
be observed that only a few of the other categories are selected
and that these categories are often very similar in their low-level
features with the correct category. Previously, the “I” was never
confused with the other categories, while now the “T” becomes a
confusing category. This shows that characters are easy to classify
when they are unique in their low-level features, which is partic-
ularly the case for the character “I” in our dataset. In contrast,
Figure 6 shows that the character “A” is a very difficult character
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FIGURE 3 | Comparisons between the different forms of decoding for

the individual instances in the test set for S03 measured in terms of

SSIM. First unimodal decoding vs. supervised multimodal decoding, then

supervised multimodal decoding with or without semantic gating and
finally supervised multimodal decoding vs. unsupervised multimodal
decoding.

FIGURE 4 | The probabilities for all instances of the test set on the six character categories for S03 for supervised multimodal decoding, supervised

multimodal decoding with semantic gating and unsupervised multimodal decoding. The instances have been sorted on the probability of the correct category.

to reconstruct, possibly because of strongly overlapping features
with other characters, such as the “H” and the “N”. The recon-
struction performance in terms of SSIM also slightly decreases
to 9.3, 8.4, and 12.3 for S01, S02, and S03, respectively, using
supervised multimodal decoding given the extended prior.

4. DISCUSSION
We introduced a hybrid Bayesian network that can decode
stimuli from the human brain by considering both low-level
feature information and high-level semantic information.
In the network, information from low-level brain areas
comes together with information from high-level brain
areas when using semantic gating. Results show that the
reconstruction performance is very accurate for the majority

of stimuli and highly improved in contrast to decoding
in a unimodal setting. Furthermore, we showed that mul-
timodal decoding can be fully automated by learning
clusters from the data, leading to equally good decoding
performance.

While discriminative models work well, it has been shown
that generative models in many cases perform better in set-
tings with few training samples (Ng and Jordan, 2002). Often
fMRI datasets are recorded under tight constraints on scan-
ning time and attention span from participants. Our generative
approach makes accurate reconstructions from fMRI data feasible
under such circumstances. Our data is recorded under a stan-
dard approach of a rapid event-related design with an hour of
scanning, which is not too demanding for participants. Using a
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FIGURE 5 | (A) shows exemplars of reconstructions for S03 for the different decoding variants. (B) shows exemplars of original images and their
reconstructions for the different participants using supervised multimodal decoding.

FIGURE 6 | Probability for all 72 instances of the test set for S03 with the extended prior that contains instances for the characters of the alphabet.

The instances have been sorted on the probability of the correct category.

relatively small set of prior images in the Gaussian mixture model
we could obtain accurate reconstructions. A simple regularized
linear regression under the same settings with a discriminative
approach for reconstruction of images at pixel level results in
very poor reconstructions contrary to our generative approach.
With some effort, similar reconstruction performance can proba-
bly be obtained with more advanced discriminative or generative
approaches, in particular those that implicitly or explicitly involve
dimension reduction (e.g., Miyawaki et al., 2008; van Gerven and
Heskes, 2010; van Gerven et al., 2010). However, such models may
be more difficult to interpret and to extend than the generative
Bayesian framework advocated here.

A strength of our generative approach with a multimodal
prior is that we can automatically infer higher-order semantic
categories from low-level image features. We found that biasing
toward the most probable category leads to better reconstruc-
tions (in terms of SSIM) than taking a standard weighted average
over all categories. The drawback of choosing the most prob-
able category is that reconstructions may converge toward the
incorrect stimulus category. It is not always possible to correctly
classify handwritten characters based on their low-level features.
Sometimes the characters are ambiguous about their category and
often the category with which it is confused is actually a cate-
gory that has highly overlapping features. Furthermore, post hoc
exploration of the prior revealed that approximately ten of the

original images of the test set are very similar to instances from
the prior that come from a different category. So even if the BOLD
response would have been recorded perfectly for these instances
we would end up with wrongly categorized reconstructions. This
suggests that perfect classification is impossible based on low-level
features alone, which might be avoided when high-level brain
areas can contribute the correct classification for categorically
ambiguous images.

In order to overcome the incorrect classification of stim-
uli based on their low-level information, semantic gating can
improve the classification and thus the reconstruction. By extract-
ing semantic information from higher-order brain areas we were
able to enforce the correct category during reconstruction. Here,
we only gated information from V2 since we did not have cover-
age of other high-level brain regions for this dataset. The dataset
was initially gathered to get the best possible acquisition of V1
and therefore extrastriate cortex was not fully available. It is
quite impressive that including categorical information from V2
alone already gives an improvement, since V2 is still a rela-
tively low-level visual area. Future work can investigate if there
is a greater improvement when categorical information from
the complete visual hierarchy is included. When an image is
shown it will propagate through the brain, so each visual area
should boost the reconstructions and classification performance.
Furthermore, studies with stimuli from a wide range of semantic
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categories could greatly benefit from this paradigm. The seman-
tic space in the brain can be mapped like in Huth et al. (2012).
This semantic information can then be gated in order to tai-
lor the prior to the stimulus that is decoded from V1, possibly
resulting in scaling up the image reconstruction to a wide range
of categories.

In this experiment, we had access to a fully labeled dataset
which made it easy to explore a supervised model, but a fully
labeled database might not be available in all settings. Especially
when we want to extend the reconstruction paradigm to the full
range of natural images an extremely large set of images is prob-
ably necessary to span the space of natural images, in which
case labels are probably not available. Therefore, we investigated
whether the reconstructions can be made with a prior for which
the mixture components were estimated in an unsupervised set-
ting. We showed that it is possible to have a fully automated setup
that infers a fitting set of images from the prior based on low-level
information without sacrificing reconstruction performance. In
our case the optimum reconstruction seems to be reached when
the set of images in the prior is subdivided in 600 clusters. This
optimum might be different for each dataset, but can be learned
from the data. In principle, it is also possible to apply semantic
gating to unsupervised decoding, but in our case this did not give
good results (investigated, but not reported in this paper). Our
dataset contained 360 recordings of stimuli, which is enough data
for six categories when the dataset is well balanced. Unfortunately
the K-means cluster assignments rarely result in a well-balanced
split. With only few stimuli it is hard to get a good estimation
with multinomial logistic regression, resulting in poor decoding
performance.

It is difficult to find a good measure for comparing images.
Here, we used a combination of two types of measurements,
structural similarity metric and classification performance. Both
measures cover different aspects of the tested images and therefore
give different results for image comparison. Together they allow
for objective comparison, but still not all reconstruction informa-
tion is encompassed by these measures. An alternative albeit time
consuming way to evaluate reconstruction performance could be
to acquire subjective ratings with a behavioral experiment.

We showed that high-quality reconstructions can be obtained
from human brain data, but our framework can be advanced fur-
ther. Empirically, we observed that it is important to have a good
voxel selection to get the framework to perform sufficiently well.
The voxel selections we made were based on retinotopic map-
ping and selecting the voxels with high explained variance. This
selection may be improved further by explicitly modeling sparse-
ness in the voxel domain during encoding. Moreover, we here
used a canonical HRF but the shape of the HRF varies across
brain regions and subjects (Handwerker et al., 2004; Badillo
et al., 2013). If the HRF is tailored to individual voxels, the
performance is expected to increase for both encoding and decod-
ing (Pedregosa et al., 2013). Another improvement could be
to make use of a richer prior. In our dataset not all original
images were accurately represented by the prior. A multi-scale
approach might make it possible to include decoding of under-
represented mid-level image features independent of semantic
category.

An interesting avenue for future research is to examine how
our framework performs on more challenging datasets while
using more brain regions to drive the reconstructions. Also, it
would be interesting to examine the merits of our framework
when reconstructing the contents of other sensory modalities, of
subjective states such as mental imagery or internal speech, or to
reconstruct motor output.

In summary, we have developed a hybrid Bayesian network
that can combine different sources and levels of information in
a natural way to yield accurate reconstructions of handwritten
characters from brain responses.

4.1. DATA SHARING
The data and code can be obtained through our lab website: www.

ccnlab.net. Please refer to this article when using our data or code.
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